All functions

Image()

Modification to image().

K

Genomic Relationship matrix of 502 lines

MegaLMM_control()

Set MegaLMM run parameters

MegaLMM_priors()

Set MegaLMM priors

SingleSite_regression_sampler_parallel()

Draws samples from all “fixed" coefficients (fixed and random) of a set of parallel linear regression models, conditional on the variance components.

bs_binomial_model()

Sample Eta given B-splines individual-level model with binomial observations

bs_diff()

B spline basis with option of centering and differencing coefficients

cis_eQTL_model()

Sample cis_eQTL coefficients

clear_Posterior()

Resets Posterior samples

combined_model()

Sample Eta given a list of different observation_models

create_data_matrices()

Create data matrices for MegaLMM from a "tall" data.frame

estimate_memory_initialization_MegaLMM()

Estimate the memory requirment for a fully initialized MegaLMM model

estimate_memory_posterior()

Estimates the memory required to store a set of posterior samples collected by sample_MegaLMM

find_candidate_states()

Finds the set of variance component proportions within a specified distance from a starting proportion

get_posterior_FUN()

Calculates the posterior mean of a function of parameters

get_posterior_HPDinterval()

Calculates Highest Posteriod Density intervals of a function of parameters

get_posterior_mean()

Calculates posterior mean of a function of parameters

`%**%`

Multiply matrices

initialize_MegaLMM()

Initialized Gibbs sampler for MegaLMM model

initialize_variables_MegaLMM()

Initialize MegaLMM variables

load_posterior_param()

load the posterior samples of a single parameter from all saved chunks

load_posterior_param_old()

load the posterior samples of a single parameter from all saved chunks

matrix_multiply_toDense()

Multiplies two matrices (sparse or dense by dense), returns the product as a dense matrix

missing_data_model()

Sample missing data

plot(<MegaLMM_state>)

Make plots of current MegaLMM state

plot_diagnostics()

Plots diagnostic plots for the fit of a MegaLMM model

print.MegaLMM_state()

Print statistics on current MegaLMM state

regression_model()

Sample Eta given regression-splines individual-level model

regression_sampler_parallel()

Draws samples from all “fixed" coefficients (fixed and random) of a set of parallel linear regression models, conditional on the variance components.

reload_Posterior()

Re-loads a full Posterior list with all parameters

reorder_factors()

Re-orders factors in decreasing order of magnitude

rstdnorm_mat()

Draws a matrix of standard normal variables

sample_MegaLMM()

Run MegaLMM Gibbs sampler

save_posterior_chunk()

Saves a chunk of posterior samples

save_posterior_sample()

Saves current state in Posterior

set_priors_MegaLMM()

Set priors for MegaLMM model.

setup_model_MegaLMM()

Set up a MegaLMM model

summary.MegaLMM_state()

Print more detailed statistics on current MegaLMM state

toDense()

Converts dense Matrix to "matrix" faster!

traceplot_array()

Make a trace plot of a set of related parameters from MegaLMM

voom_model()

Sample Eta given a voom observation model

yield_data

Yield BLUPs for 502 lines across 19 trials